映客直播

  • Skip to content
  • Skip to footer
  • Accessibility options
University of 映客直播
  • 映客直播
  • Business and
    employers
  • Alumni and
    supporters
  • For
    students
  • Accessibility
    options
Open menu
Home
Home
  • Close
  • Study here
    • Get to know us
    • Why choose 映客直播?
    • Explore our prospectus
    • Chat to our students
    • Ask us a question
    • Meet us
    • Open days and visits
    • Virtual tours
    • Applicant days
    • Meet us in your country
    • Campuses
    • Our campuses
    • Our city
    • Accommodation options
    • Our halls
    • Helping you find a home
    • What you can study
    • Find a course
    • Full A-Z course list
    • Explore our subjects
    • Our academic departments
    • How to apply
    • Undergraduate application process
    • Postgraduate application process
    • International student application process
    • Apprenticeships
    • Transfer from another university
    • International students
    • Clearing
    • Funding your time at uni
    • Fees and financial support
    • What's included in your fees
    • 映客直播 Boost – extra financial help
    • Advice and guidance
    • Advice for students
    • Guide for offer holders
    • Advice for parents and carers
    • Advice for schools and colleges
    • Supporting you
    • Your academic experience
    • Your wellbeing
    • Your career and employability
  • Research
    • Research and knowledge exchange
    • Research and knowledge exchange organisation
    • The Global Challenges
    • Centres of Research Excellence (COREs)
    • Research Excellence Groups (REGs)
    • Information for business
    • Community University Partnership Programme (CUPP)
    • Postgraduate research degrees
    • PhD research disciplines and programmes
    • PhD funding opportunities and studentships
    • How to apply for your PhD
    • Research environment
    • Investing in research careers
    • Strategic plan
    • Research concordat
    • News, events, publications and films
    • Featured research and knowledge exchange projects
    • Research and knowledge exchange news
    • Inaugural lectures
    • Research and knowledge exchange publications and films
    • Academic staff search
  • 映客直播
  • Business and employers
  • Alumni, supporters and giving
  • Current students
  • Accessibility
Search our site
Image of checkland building falmer campus
映客直播
  • 映客直播
  • Your university
  • Governance and structure
  • Working with us
  • Statistics and legal
  • News and events
  • Contact us
  • News and events
  • News
  • 2014
  • University wins £233,000 to probe nanoscale reactions

University wins £233,000 to probe nanoscale reactions

The University of 映客直播 has been awarded almost a quarter of a million pounds to buy a state-of-the-art instrument which could help develop new ways to treat sites contaminated with pollutants.

Published 27 February 2014

The cutting-edge spectrometer will study chemical reactions and structures at the nanoscale – about one-billionth of a metre. The university beat competition from institutions across the UK for the special capital funding from the Natural Environment Research Council (NERC).

Professor Andrew Cundy, the university's Professor of Geoscience, said: "We are very excited by this award – it will provide us with some of the closest-ever examination of geochemical and other reactions at the nanoscale. This, for example, could lead to the introduction of new ways to improve environmental quality and treat contaminated sites. This is an extremely prestigious and highly competitive award from a research council, and we see this as an immediate return on the university's investment of almost £400,000 in its nanomaterials group."

Reactions at the nanoscale are critical in the formation and accumulation of a range of metal resources, in the environmental cycling and clean-up of key pollutants, and in understanding the interaction between environmental contaminants and biological materials.

Dr Raymond Whitby, the grant instigator, said: "This is an excellent opportunity to bring disparate research groups together and push the boundaries of analytical surface science for a multitude of disciplines."

The new spectrometer is an X-ray Photoelectron Spectrometer (XPS). A typical XPS can only resolve data acquisition over one or two micrometres (a micrometre is one-millionth of a metre), but the new instrument will obtain data with resolutions below 100 nanometers, representing a major breakthrough for laboratory-based environmental science research. The new instrument is expected to be delivered in the summer.

Professor Phil Ashworth, Director of Research & Development (Life & Physical Sciences), said the instrument will underpin the delivery of "world class environmental science, generating exciting scientific discovery and building an effective capability to sustain high quality research".

"The NERC award was a tremendous vote of confidence in nanomaterials research at 映客直播 – the funding call had only a 22 per cent success rate for 121 bids from 62 research organisations across the UK."

Professor Cundy, who co-ordinates the university's cross-disciplinary research group in smart nanomaterials, said the spectrometer will allow X-rays to be focussed and pulsed on to samples ranging from nano-particles and minerals to biological materials, enabling scientists to probe sensitive environmental and biological samples: "We expect big things by interrogating small samples."

He said it will allow detailed chemical studies of recycled materials and analysis of metals and processing products, enabling more sustainable uses of natural resources; in-depth study of nanoscale particles and their impact on the environment and human health; studies of the interactions between nano-particles and geological and biological materials; and the implementation of the next generation of analytical tools for nanoscale analysis.

Professor Sergey Mikhalovsky, the university's Professor of Materials Chemistry, said the university will coordinate a south-east regional consortium working in nanotechnology and will arrange for the world-leading equipment to be available for academic use and commercial hire.

The university's smart nanomaterials group, which draws members from the Schools of Art and Design, Pharmacy and Biomolecular Sciences, and Environment and Technology, recently received £400,000 of university funding to accelerate progress in nanoscale research. This included £274,000 to fund extra equipment for the spectrometer and £120,000 for two PhD studentships.

Professor Andrew Cundy

Professor Andrew Cundy

Silver nanoparticles (dark) on a silica surfaceSilver nanoparticles (dark) on a silica surface

Back to top

Contact us

University of 映客直播
Mithras House
Lewes Road
映客直播
BN2 4AT

Main switchboard 01273 600900

Course enquiries

Sign up for updates

University contacts

Report a problem with this page

Quick links Quick links

  • Courses
  • Open days
  • Explore our prospectus
  • Academic departments
  • Academic staff
  • Professional services departments
  • Jobs
  • Privacy and cookie policy
  • Accessibility statement
  • Libraries
  • Term dates
  • Maps
  • Graduation
  • Site information
  • The Student Contract

Information for Information for

  • Current students
  • International students
  • Media/press
  • Careers advisers/teachers
  • Parents/carers
  • Business/employers
  • Alumni/supporters
  • Suppliers
  • Local residents